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Abstract

Boundary integral formulations of the heat equation involve time convolutions in addition to surface potentials. If M is
the number of time steps and N is the number of degrees of freedom of the spatial discretization then the direct compu-
tation of a heat potential involves order N2M2 operations. This article describes a fast method to compute three-dimen-
sional heat potentials which is based on Chebyshev interpolation of the heat kernel in both space and time. The
computational complexity is order p4q2NM operations, where p and q are the orders of the polynomial approximation
in space and time.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Boundary integral formulations of parabolic problems involve time convolutions in addition to the usual
boundary integral operators. While the finite element or finite difference method are highly popular for this
type of problems, the method of layer potentials has distinct advantages, in particular, stability of explicit time
stepping and reduction of unknowns to the boundary surface. Boundary element methods that evaluate the
time convolution have been discussed in the past decades in several places, such as [4,9,11].

If the time convolution is computed directly the cost quickly becomes prohibitively expensive with increas-
ing problem size which makes the integral equation approach less attractive than competing approaches.
However, the situation changes if fast methods for the computation of heat potentials are considered. One
such an algorithm is the fast Gauss transform [7]. In this approach the heat kernel is approximated by a Her-
mite expansion, which leads to an efficient scheme to compute the spatial convolution efficiently. This
approach has been combined with re-starts to avoid time convolutions [12]. The original version of the fast
Gauss Transform is based on Hermite expansions of the heat kernel. Since the spatial variables of the kernel
separate, the translation operator appear in tensor product form, which can be exploited to reduce the
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computational cost associated with translation operators [13]. Besides Hermite expansions, exponential expan-
sions have been considered as well, in this case translation operators are diagonal [8].

Another technique that exploits the convolution form of the time integral is to evaluate heat potentials in
Fourier domain. This was described for bounded domains in [6], where the Green’s function is expanded in a
Fourier series. The method must be combined with nonuniform FFTs since the heat sources are located on a
boundary surface. In unbounded domains the kernel appears as a continuous Fourier transform which results
in some nontrivial complications, cf. [5].

The approach described in this article is more close to the fast Gauss Transform in that the computation is
performed in ‘physical’ and not in Fourier domain. Hence, the method is somewhat simpler when the solution
must be evaluated in physical space in every time step, which is the case, for instance, when the heat
equation is solved via the Green’s representation theorem. The main features of the discussed approach are
as follows:

� The heat kernel is expanded in both space and time. The time convolution is computed using a hierarchical
scheme, similar to the FMM for one-dimensional source distributions. However, certain modifications are
necessary to account for the Volterra form of heat potentials. The cost per time step in this algorithm is
almost independent of the length of the time interval.
� The heat kernel is interpolated at the Chebyshev nodes in space and time. The translation operators of the

multipole method can be easily derived and preserve the tensor product form of the kernel.

After discussing heat potentials and their discretization in Section 2 we introduce the Chebyshev interpo-
lation and the resulting translation operators in Sections 3 and 4. This leads to the fast algorithm described in
Section 5. Section 6 concludes with numerical results.
2. Heat potentials

It is well known that the solution of the heat equation satisfies Green’s Representation formula. If ut = Du

in the exterior of a domain with boundary S and if u has vanishing initial conditions, then Green’s formula
assumes the form
1

2
uðx; tÞ ¼Kuðx; tÞ �V

ou
on
ðx; tÞ; x 2 S; t > 0: ð1Þ
In three spatial variables, the single- and double layer potential are given by
Vgsðx; tÞ ¼
Z t

0

Z
S

Gðx� y; t � sÞgsðy; sÞdSy ds;

Kgdðx; tÞ ¼
Z t

0

Z
S

o

ony
Gðx� y; t � sÞgdðy; sÞdSy ds;
where S is the boundary surface, and G is the heat kernel which is given by
Gðr; tÞ ¼ 1

ð4ptÞ

3=2

exp � rj j2

4t

 !
:

For the following discussion it is convenient to write the single layer potential in the form
Vgsðx; tÞ ¼
1ffiffiffiffiffiffi
4p
p

Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t � s
p V ðt � sÞgsðsÞds; ð2Þ
where  !

V ðdÞgsðx; sÞ ¼

1

4pd
exp � jx� yj2

4d
gsðy; sÞdSy ; ð3Þ
and the double layer potential in an analogous manner.
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The kernel of (3) is the Green’s function of the two-dimensional heat equation. Using local parameteriza-
tions, it can be shown that this operator is q-times differentiable in d for every point x 2 S if the surface is of
class Cq+1. The first term of the Taylor series is given by
V ðdÞgsðxÞ ¼ gsðxÞ þOðdÞ; ð4Þ
KðdÞgdðxÞ ¼ HðxÞgdðxÞ þOðdÞ; ð5Þ
where H(x) is the mean curvature of the surface.
The direct boundary element method consists of discretizing (1) and solving for the missing bound-

ary data. The usual discretization schemes for integral operators, namely the Galerkin, collocation and
the Nyström method are available. In this work we consider the latter, because no influence coefficients
must be computed or stored, which constitutes a significant savings over the Galerkin or collocation
method.

2.1. Temporal discretization

The Nyström method replaces integrals by quadrature rules and enforces the equation on the quadrature
nodes. For the temporal discretization we consider the composite midpoint rule of meshwidth Dt and quad-
rature nodes tj = (j + 1/2)Dt. Because of the Oððt � sÞ�

1
2Þ-singularity of the integrand in (2) this rule is applied

to the interval [0, iDt], where the integrand is smooth. For the singular piece [iDt, ti] expansion is used. The
resulting rule is
1ffiffiffiffiffiffi
4p
p

Z ti

0

V ðti � sÞffiffiffiffiffiffiffiffiffiffi
t � s
p gsðsÞds � Dtffiffiffiffiffiffi

4p
p

Xi�1

j¼0

V ðti � tjÞffiffiffiffiffiffiffiffiffiffiffiffi
ti � tj
p gsðtjÞ þ

ffiffiffiffiffiffi
Dt
2p

r
gsðtiÞ:
A straightforward analysis shows that the error of the singular part is OðDt3=2Þ whereas the error of the mid-
point rule is OðDt1=2Þ. To improve this convergence rate, we introduce the following singularity subtraction
1ffiffiffiffiffiffi
4p
p

Z t

0

V ðt � sÞffiffiffiffiffiffiffiffiffiffi
t � s
p gsðsÞds ¼ 1ffiffiffiffiffiffi

4p
p

Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t � s
p V ðt � sÞgsðsÞ � V ð0ÞgsðtÞð Þdsþ

ffiffiffi
t
p

r
gsðtÞ;
where the last term comes from expansion (4). Now the integrand is Oððt � sÞ
1
2Þ which implies that the error of

the composite midpoint rule is improved to OðDt3=2Þ. The desingularized midpoint rule simplifies to
1ffiffiffiffiffiffi
4p
p

Z ti

0

V ðti � sÞffiffiffiffiffiffiffiffiffiffi
t � s
p gsðsÞds � Dtffiffiffiffiffiffi

4p
p

Xi�1

j¼0

V ðti � tjÞffiffiffiffiffiffiffiffiffiffiffiffi
ti � tj
p gsðtjÞ þ migsðtiÞ; ð6Þ
where
mi ¼
ffiffiffi
ti

p

r
� Dtffiffiffiffiffiffi

4p
p

Xi�1

j¼0

1ffiffiffiffiffiffiffiffiffiffiffiffi
ti � tj
p :
The analogous rule for the double layer potential is
1ffiffiffiffiffiffi
4p
p

Z ti

0

Kðti � sÞffiffiffiffiffiffiffiffiffiffi
t � s
p gdðsÞds � Dtffiffiffiffiffiffi

4p
p

Xi�1

j¼0

Kðti � tjÞffiffiffiffiffiffiffiffiffiffiffiffi
ti � tj
p gdðtjÞ þ miHgdðtiÞ; ð7Þ
where H denotes multiplication with the mean curvature. The desingularized rules (6) and (7) are OðDt3=2Þ and
differ from the regular rule only by the weight of the node ti.
2.2. Spatial discretization

The surface integral operators in the above quadrature rules have smooth kernels, thus the Nyström
method can also be used for the spatial discretization. Quadrature rules for surface integrals are usually based
on a triangulation of the surface and piecewise polynomial interpolation. Their form is
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Z
S

f ðxÞdsðxÞ �
X

P

f ðxP ÞwP : ð8Þ
We use the quadratic rule where the quadrature points xP are located on the midpoints of the edges of the
triangles; the details of the derivation of this rule can be found in Atkinson [1] and Chien [3]. Since the kernels
in (6) become increasingly peaked when Dt is decreased, the meshwidth Dx of the surface triangulation must be
decreased as well. The form of the heat kernel suggests that the relationship between the two mesh parameters
should be at least Dx � ðDtÞ

1
2.

2.3. Nyström method

We now turn to the discretization of (1). The surface integral operators in the desingularized rules (6) and
(7) are replaced by the spatial rule (8) for time steps j = 0, . . ., i � 2. The term j = i � 1 is replaced by the trun-
cated local expansions (4) and (5), which introduces an additional error of OðDt3=2Þ. The resulting recurrence is
1

2
ui

P ¼ miH pui
P � mivi

P þ
ffiffiffiffiffi
Dt
p

H pui�1
P � vi�1

P

� �
� Ui

P ; ð9Þ
where ui
P is the approximation for u(ti, xP) and vi

P is the approximation for o
on uðti; xP Þ and
Ui
P ¼ Dt

Xi�2

j¼0

X
Q

wQ Gðti � tj; xP � xQÞvj
Q �

o

ony
Gðti � tj; xP � xQÞuj

Q

� �
: ð10Þ
The smooth potential Ui
P contains only quantities of the previous time steps, hence (9) can be solved for the

unknown boundary data. By far the dominant cost in every time step the computation of Ui
P . In the following

we describe a fast method for this task.
3. Chebyshev expansion of the heat kernel

Chebyshev polynomials are commonly used to approximate functions in the interval [�1, 1]. In this article,
we use the definition
T nðxÞ ¼ cn cosðn arccosðxÞÞ; cn ¼
1ffiffi
2
p ; n ¼ 0;

1; n > 0:

�

Note that the inclusion of the factor cn is not standard, but will simplify the formulas below. The roots of Tn+1

are given by
xn
k ¼ cos

p
2

2k þ 1

nþ 1

� �
; 0 6 k 6 n
and the Lagrange polynomials with respect to these nodes are
LiðxÞ ¼
Yn

k¼0
k 6¼i

x� xn
k

xn
i � xn

k

:

The interpolation Tn f of a function f at the Chebyshev nodes can be expressed in terms of Lagrange
polynomials
Tn f ðxÞ ¼
Xn

i¼0

f ðxn
i ÞLiðxÞ ð11Þ
as well as in terms of Chebyshev polynomials
Tn f ðxÞ ¼
Xn

a¼0

f̂ aT aðxÞ; ð12Þ
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where
f̂ a ¼
2

nþ 1

Xn

k¼0

T aðxn
kÞf ðxn

kÞ: ð13Þ
The last formula follows from the discrete orthogonality of the Chebyshev polynomials, see, e.g. [2].
The essence of most fast methods for integral operators is to replace the kernel by a truncated series expan-

sion. Since (11) and (12) represent the same polynomial they can be used alternatively. In order to preserve the
tensor product form of the translation operators discussed below, we will use the Lagrange form for the tem-
poral interpolation and the Chebyshev expansion for the spatial interpolation.

Let m be a cube in R3 with center �x and side length 2hx and ~m be another cube with same side length and
center ~x, furthermore let I and ~I be non overlapping intervals of R with length 2ht and centers �t and ~t, respec-
tively. For x 2 m, y 2 ~m, t 2 I and s 2 ~I we introduce local variables with the transformation
x ¼ �xþ x0hx; y ¼ ~xþ y 0hx; x0; y0 2 ½�1; 1�3

t ¼ �t þ t0ht; s ¼ ~t þ s0ht; t0; s0 2 ½�1; 1�:
When the heat kernel is considered as a function of the eight local variables, the Chebyshev interpolation using
order p polynomials in space and order q polynomials in time is
1

ð4pÞ3=2

1

ðt � sÞ3=2
exp � x� yj j2

4ðt � sÞ

 !
¼ 1

ð4phtÞ3=2

1

ðd þ t � s0Þ3=2
exp �q

r þ x0 � y0j j2

d þ t0 � s0

 !

� 1

ð4phtÞ3=2

X
06i6q
06j6q

X
aþbj j6p

Eia;jbLiðt0ÞLjðs0ÞT aðx0ÞT bðy0Þ: ð14Þ
Here, a and b are multiindices, a = (a1, a2, a3), jaj = a1 + a2 + a3, and T aðx0Þ ¼ T a1
ðx01ÞT a2

ðx02ÞT a3
ðx03Þ. The con-

stants d > 0, r 2 R3 and q > 0 are given by
d ¼ ð�t �~tÞ=ht; ð15Þ
r ¼ ð�x� ~xÞ=hx; ð16Þ

q ¼ h2
x

4ht
: ð17Þ
It follows from (11) and (13) that the coefficients in (14) are given by
Eia;jb ¼ Eð1Þia1;jb1
Eð2Þia2;jb2

Eð3Þia3;jb3
; ð18Þ
where
EðrÞic;jd ¼
2

p þ 1

� �2
1

d þ xq
i � xq

j

� �1
2

X
06k6p
06l6p

T cðxp
kÞT dðxp

l Þ exp �q
ðrr þ xp

k � xp
l Þ

2

d þ xq
i � xq

j

 !
:

3.1. Approximation errors

Since the heat kernel is an analytic function in all local variables the approximation error of the Chebyshev
exhibits exponential decay up to logarithmic factors [10]. To illustrate this behavior, we compute the Cheby-
shev interpolation error of the function
Gðr; sÞ ¼ 1

ðd þ sÞ1=2
exp �q

r2

d þ s

� �
; sj j; rj j 6 1:
Fig. 1 shows the maximum interpolation error as a function of p and q when d = 4 and q = 10. Since the figure
is on a logarithmic scale, the exponential decay in the s-variable appears as a straight line. In the r-variable G is
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Fig. 1. Maximum errors of the Chebyshev interpolation as a function of p and q; q = 10 and d = 4.
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an entire function, therefore the decay of the error is initially faster than exponential in p until the error of the
s-variable is dominant.
4. Translation operators

The FMM combines sources and evaluation points in a tree of cubes. To accelerate the computation of
cube interactions the kernel is replaced by a truncated series expansion. The efficient evaluation of such a series
involves the moments of the source cube and the expansion coefficients of the destination cube. In the course
of the computation, the moments and coefficients must be translated between the different levels of the cube
hierarchy.

In addition to the space variable, heat potentials involve an integration over the time variable. Therefore,
the time interval [0, T], in which the heat equation is to be solved, is also clustered into a binary tree of inter-
vals. The finest level, denoted by level zero, consists of M intervals of length Dt. The half-length of the finest
level intervals is also denoted by ht0 = Dt/2. The half length of a level-l interval is ht = 2l ht0. Likewise, the
half-length of a cube in the finest spatial level is hx0 and the half-length in level l is hx = 2l hx0.

We briefly describe the translation operators related to Chebyshev interpolation in space and time.
4.1. Moments-to-local (MtL) translations

The moments-to-local (MtL) translation is the evaluation of a heat potential in I · m due to sources in ~I � ~m
using the expansion (14). The potential can be any combination of single- and double-layer sources. Replacing
the kernel by the Chebyshev interpolation results in the series
X
tQ2~I ;
xP2S~m

Gðx� xP ; t � tQÞgsðxP ; tQÞ þ
o

ony
Gðx� xP ; t � tQÞgdðxP ; tQÞ

� �
wPDt

� 1

ð4phtÞ3=2

X
06i6q

X
aj j6p

kiaLiðt0ÞT aðx0Þ:
The summation in the left-hand side is over quadrature points in ~I � S~m and primes denote local variables. The
expansion coefficients kia are given by
kia ¼
Xq

j¼0

X
bj j6p� aj j

Eia;jbljb: ð19Þ
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The ljb’s are the moments of the sources in ~I � ~m, given by
ljb ¼
X
tQ2~I ;
xP2S~m

Ljðt0QÞ T bðx0P ÞgsðxP ; tQÞ þ
o

ony
T bðx0P ÞgdðxP ; tQÞ

� �
wPDt:
Because the expansion coefficients in (18) appear as products, the MtL transform (19) is a tensor product in
the space variables, which can be exploited to reduce the cost of computing all kia, i = 0, . . .,q, jaj 6 p to
O(q2p4) operations.

4.2. Moments-to-moments (MtM) translations

In the FMM sources and evaluation points are combined in a tree of cubes in space and a tree of time inter-
vals. The moments are computed in a recursive fashion, beginning with the finest level. This involves recen-
tering moments from a child ~m� ~I to the parent m · I, this operation is also known as the MtM translation
and is described next.

The MtM translation operators follows from the following addition formula for the Chebyshev
polynomials:
T c
1

2
x� 1

2

� �
¼
Xc

d¼0

acdT dðxÞ; ð20Þ
where
acd ¼
2

p þ 1

Xp

k¼0

T dðxp
kÞT c

1

2
xp

k �
1

2

� �
:

This formula directly follows from (13) and holds when p P c. A similar result holds for the Lagrange
polynomials
Li
1

2
t � 1

2

� �
¼
Xq

j¼0

bijLjðtÞ; ð21Þ
where
bij ¼ Li
1

2
xq

j �
1

2

� �
:

Let ð�x;�tÞ be the center and (4hx, 4ht) be the lengths of the parent m · I. The lengths of the child ~m� ~I are
(2hx, 2ht) and the centers are ~x ¼ �xþ rxhx and ~t ¼ �t þ rtht where rt, rx,k 2 { ± 1}. The contribution lia of
the child’s moments ~ljb to the parent’s moment is
lia ¼
X
tQ2~I;
xP2S~m

Li
tQ ��t

2ht

� �
T a

xP � �x
2hx

� �
gsðxP ; tQÞ þ

o

onx
T a

xP � �x
2hx

� �
gdðxP ; tQÞ

� �
wPDt:
Changing the local variables with respect to m · I to variables local to ~m� ~I gives
t ��t
2ht
¼ 1

2

t �~t
ht
þ 1

2
rt;

x� �x
2hx

¼ 1

2

x� ~x
hx
þ 1

2
rx:
Combining this with (20) and (21) results in
lia ¼
Xq

j¼0

bij

X
b6a

aa1b1
aa2b2

aa3b3
~ljb:
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This translation is again of tensor-product form in the spatial variable. Thus the complexity of one MtM
transform is O(q2p4).

In the algorithm described in the following there are also MtM translations from one temporal interval to a
subinterval within the same cube. In this case the translation formula involves only in the spatial variable
lia ¼
Xq

j¼0

bij~lja:
This MtM translation has O(q2p3) complexity.

4.3. Local-to-local (LtL) translations

In the LtL translation the Chebyshev expansion for m · I is recentered to the child ~m� ~I .
Let ð�x;�tÞ be the center and (4hx, 4ht) be the lengths of the parent m · I. The lengths of the child ~m� ~I are

(2hx, 2ht) and the centers are ~x ¼ �xþ rxhx and ~t ¼ �t þ rtht where rt, rx,k 2 { ± 1}. The translation from the
parent’s expansion to the child’s expansion follows from the addition formulas (20) and (21):
Uðx; tÞ ¼
X
aj j<p;

06i6q

kaiLi
t ��t
2ht

� �
T a

x� �x
2hx

� �
¼
X
aj j<p;

06i6q

kaiLi
1

2

t �~t
ht
� rt

2

� �
T a

1

2

x� ~x
hx
� rx

2

� �

¼
X
aj j<p;

06i6q

~kaiLi
t �~t

ht

� �
T a

x� ~x
hx

� �
;

where
~kai ¼
Xq

j¼0

bji

X
bPa
b6p

aa1b1
aa2b2

aa3b3
kbj ð22Þ
are the expansion coefficients for ~m� ~I . The tensor product form in the above formula can be used to compute
an LtL translation in O(q2p4) operations.

If the translation is only in time (i.e., m ¼ ~m), then (22) simplifies to
~kai ¼
Xq

j¼0

bjikaj
which can be computed in O(q2p3) operations.

5. A fast algorithm for the time convolution

This section describes in detail the fast method for the smooth potential (10).

5.1. Temporal tree

Recall that the half-lengths of the intervals in the finest level of the temporal tree are ht,0 = Dt/2, hence the
ith interval I0

i is [2i ht,0, 2(i + 1)ht,0] and its center is the quadrature node ti. The time quadrature of the smooth
potential (10) is over intervals I0

0 [ . . . [ I0
i�2. That is, there is one interval between the integration interval and

the interval where the smooth potential is evaluated.
The finest-level intervals are the leafs of the binary tree, cf. Fig. 2. Let the binary representation of i be
i ¼ rp2p þ 	 	 	 þ r12þ r0; ð23Þ

then the position of I0

i in the tree can be found as follows. Start in the leftmost node of the p + 1st level, then
for l = p, . . ., 0 follow the left branch when rl = 0 and the right branch when rl = 1. The parent of I0

i in the lth
level is denoted by Il

il
where il is given by
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Fig. 2. Time step for i = 20, l’s represent moments, and k’s represent expansion coefficients. Quantities on dark ground have been
computed in the previous time steps, quantities on white ground are computed in this time step. Curved arrows indicate MtL translations.

964 J. Tausch / Journal of Computational Physics 224 (2007) 956–969
il ¼ rp2p�l þ 	 	 	 þ rlþ12þ rl: ð24Þ

The interval I l

il
has length ht,l = 2lht,0 and is given by
Il
il
¼

[2lðilþ1Þ�1

j¼2lil

I0
j :
The neighbors of I l
il

are Nl
i ¼ fIl

il�1; I
l
il
g for il > 0 and Nl

0 ¼ fIl
0g for il = 0. Because of the Volterra form of the

integral operators this definition only involves intervals corresponding to earlier times. The interaction list Il
il

of Il
il

consists of nodes in level l, which are children of Il
il
’s parent’s neighbors, but not neighbors of Il

il
. Because

of the simple structure of the binary tree, there are only two nontrivial cases of interaction lists. If the binary
representation of i > 1 is given by (23), then
Il
il
¼

fIl
il�2g; if rl ¼ 0;

fIl
il�3; I

l
il�2g; if rl ¼ 1:

(

For i = 0 or i = 1 the interaction lists Il
il

are empty. Thus for il > 1 there are either one or two intervals in an
interaction list, depending on whether the node is the right or the left branch of its parent. If t 2 I0

i then the
interval of integration in (10) is the union of the interaction lists of all parents of I0

i , that is,
½0; 2ði� 1Þht0� ¼
[p
l¼0

Il
il
: ð25Þ
5.2. Spatial tree

Similar to the FMM in potential theory, we introduce a hierarchical decomposition of R3 into cubes. In the
finest level the cubes have side length 2hx,0, where hx,0 is a parameter at our disposition, whose choice will be
discussed later. The next coarser level consists of cubes of side length 4hx,0 which contain eight finest level
cubes. The coarsest level cube has side length 2Lsþ1hx;0 and contains the surface S. The set of nonzero cubes
in level lS is denoted by ClS .

The heat kernel is smooth for t > s and exponentially decaying in space, therefore it suffices to compute
MtL translation between neighboring cubes only. When the separation of t and s is small, the heat kernel
is peaked and must be resolved by fine-level cubes and fine-level intervals. For larger separations of t and s
the kernel can be resolved in coarse-level cubes and intervals. The number of neighbors in MtL translations
is independent of the level.
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To control the errors introduced by the Chebyshev expansion and by the far field truncation the relation-
ship between the temporal level l and the spatial level lS is such that the parameter q in the Chebyshev expan-
sion of the heat kernel (14) remains bounded. Because of (17) the dependence of the temporal level l to the
spatial level lS is
lS ¼ min
l
2

� 	
; LS

� �
; ð26Þ
where [Æ] denotes rounding off to the next smaller integer. Thus for time-levels l 6 2LS the values of q are either
q0 or q0/2, where
q0 ¼
h2

x0

4ht0
: ð27Þ
5.3. The fast algorithm

To compute the right-hand side in (10) efficiently the heat potentials are expanded in local expansions that
are valid in a given interval of the time-tree and in a given cube of the corresponding level of the spatial tree.

Specifically, in the ith time step the vector kl
m is the vector of expansion coefficients that is valid in I il � Sm

representing heat sources in Il
il
� S. Here, i and il are given by (23) and (24), respectively.

Because of (25) the smooth potential can be computed by translating and adding expansions from the coar-
ser to the finer levels and then evaluating the resulting expansion in the finest level.

The kl
m’s are computed using the MtL translations, the moments are computed using the MtM translations.

The smooth potential in the ith time step depends only on the kl
m’s in I0

i ’s parents I l
il
, l = 0, . . ., p. Hence,

only one set of expansion coefficients per temporal level must be stored and updated. Since the expansion coef-
ficients in the coarser levels are valid in larger time intervals it is not necessary to update all coefficients in all
levels in every time step. Indeed, if r0 = . . .rL�1 = 0 in (23) then only the kl

m’s in levels 0 6 l 6 L must be
updated.

The expansion coefficients of I l
il

depend on the moments of Il
il�2 and Il

il�3, denoted by ll
2;m and ll

3;m. Thus, it is
possible to store and update only two sets of expansion coefficients in each level.

One time step of this algorithm is illustrated in Fig. 2. A more detailed description follows.
MtL translations for levels 0 6 l 6 L

l = L
for = m 2 ClS
for = m0 2NðmÞ
form kl

m by translating ll
2m0 and ll

3m0

end
end
for l = L � 1, . . ., 0

for = m 2 ClS
for = m0 2NðmÞ
form kl

m by translating ll
2m0

end
end

end

MtM translations for levels 0 6 l 6 L

l = L
for = m 2 ClS
overwrite ll
3m with ll

2m

end
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for l = L, . . ., 1
for = m 2 ClS
if = l is even and [l/2] 6 LS

CðmÞ :¼Children of m
else

CðmÞ :¼{m}
end if
for = m0 2 CðmÞ

form ll
2m by translating ll�1

2m0 and ll�1
3m0

end
end

end

LtL translations for levels 0 6 l 6 L

for l = L + 1, . . ., 1

for = m 2 ClS

if = l is even and [l/2] 6 LS
CðmÞ :¼Children of m
else

CðmÞ :¼{m}
end if
for = m0 2 CðmÞ

translate kl
m and add to kl�1

m0

end
end

end

Algorithm for computing the smooth potential

for i = 2, . . ., M
Determine p and L from the binary expansion of i.
Perform MtM translations
for = m 2 C0

Compute the moments l0
2;m

end
Perform MtL translations
Perform LtL translations
for m 2 C0

Evaluate the expansions using the coefficients k0
m

end
end

5.4. Complexity

The binary tree has O(M) nodes. Each node is made up of cubes in the corresponding spatial level.
Using geometric series arguments it follows that the number of all nonempty cubes in all nodes is
O(NM). For every cube one set of moments and one set of expansion coefficients is computed using a
bounded number of translation operators. The estimates in Section 4 imply that the total complexity is
O(p4q2NM).
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Fig. 3. L2-norm of the solution of the sample problem as a function of time.
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6. Numerical example

To illustrate the convergence behavior we solve the heat equation in the exterior of the unit sphere. The
solution approach is based on the Green’s Representation formula (1), desingularized Nyström discretization,
and the fast method to evaluate the heat potentials. To obtain a problem with known solution we place the
heat source
uðx; tÞ ¼ 1

ð4ptÞ3=2
exp � x� x0j j2

4t

 !
ð28Þ
at the point x0 = [0.5, 0, 0], supply the Neumann data on the sphere and compare the numerical solution on
the sphere with the exact solution (28). The L2 norm of the solution as a function of time is shown in Fig. 3
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Fig. 4. L2-Norm of the error for p = 12 (top), p = 16, p = 20, and p = 24 (bottom). The last two lines overlap.



Table 1
Discretization parameters for results in Table 2 and Figs. 5 and 6

Mesh # Time steps # Triangles p q LS q0

1 20 192 12 4 1 2.5
2 40 768 16 4 1 5
3 80 3072 20 4 1 10
4 160 12,288 24 4 2 5
5 320 12,288 28 6 2 10

Table 2
Results for the meshes in Table 1

Mesh cpu Time Ratio Error Rate

1 4 3.3e � 9 3.85e � 3
2 20 6.4e � 10 7.42e � 4 2.37
3 131 2.1e � 10 1.02e � 4 2.86
4 7218 7.0e � 10 3.48e � 5 1.55
5 45844 5.3e � 10 1.24e � 5 1.49
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Fig. 5. L2-errors corresponding to discretization meshes in Table 1; coarsest (top) to finest (bottom) mesh.
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6.1. Choice of parameters

In the discretization scheme considered, the time step size Dt has the greatest influence on the error. This
parameter determines the quadrature error of the temporal midpoint rule as well as the truncation error in the
expansion of the local part.

The parameter of greatest influence to the error of the fast method is q0, because it controls the error due to
neglecting well-separated interactions. Increasing q0 reduces this error but demands for larger values of p

and q. Once Dt and q0 are determined, the cube width hx0 follows from (27). Table 2 and Figs. 5 and 6 show
the L2-error for t = 0.5 and cpu timings for refining the meshwidth. The table also displays the ratio of the cpu
time to the complexity estimate p4q2NM and the convergence rate of the error.

Fig. 4 displays the L2-errors of the solution of the test problem as a function of time for increasing values of
p. In this case, there are 80 time steps and 3072 triangles.
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Fig. 6. Cpu times (in s) per time step as a function of time. The numbers refer to the meshes of Table 1. The cpu times for Meshes 1 and 2
resulted are too short to be measured accurately and are not shown.
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7. Conclusion

We have discussed a fast method for solving heat conduction problems with layer potentials. The numerical
results are in good agreement with the O(p4q2NM) complexity and the OðD3=2Þ quadrature error. It is possible
to construct higher-order quadrature schemes that evaluate more terms of the expansion of the local part. The
difficulty is that the higher terms involve derivatives of the surface curvature and get very complicated.

For the simplicity of exposition, we have restricted the discussion to the homogeneous heat equation and
vanishing initial conditions. Source terms lead to volume potentials which can be treated with the same inter-
polation scheme of the kernel. Non-trivial initial conditions can be included with well-documented algorithms,
such as the fast Gauss transform.
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